Friday, July 10, 2009

Wave farms

The world's first commercial wave farm opened in 2008 at the Aguçadora Wave Park near Póvoa de Varzim in Portugal. It uses three Pelamis P-750 machines with a total installed capacity of 2.25MW. A second phase of the project is now planned to increase the installed capacity to 21MW using a further 25 Pelamis machines.

Funding for a 3MW wave farm in Scotland was announced on February 20, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for marine power in Scotland. The farm will be the world's largest with a capacity of 3MW generated by four Pelamis machines.

Funding has also been announced for the development of a Wave hub off the north coast of Cornwall, England. The Wave hub will act as giant extension cable, allowing arrays of wave energy generating devices to be connected to the electricity grid. The Wave hub will initially allow 20MW of capacity to be connected with potential expansion to 40MW. Four device manufacturers have so far expressed interest in connecting to the Wave hub.

The scientists have calculated that wave energy gathered at Wave Hub will be enough to power up to 7,500 households. Savings that the Cornwall wave power generator will bring are significant: about 300,000 tons of carbon dioxide in the next 25 years.

A CETO wave farm of the coast of Western Australia has been operating to prove commercial viability and after preliminary environmental approval is poised for further development.
Discussion of Salter's Duck
While historic references to the power of waves do exist, the modern scientific pursuit of wave energy was begun in the 1970s by Professor Stephen Salter of the University of Edinburgh, Scotland in response to the Oil Crisis. His 1974 invention became known as Salter's Duck or Nodding Duck, although it was officially referred to as the Edinburgh Duck. In small scale controlled tests, the Duck's curved cam-like body can stop 90% of wave motion and can convert 90% of that to electricity. The machine has never gone to sea, primarily because its complex hydraulic system is not well suited to incremental implementation, and the costs and risks of a full-scale test would be high.

According to sworn testimony before the House of Parliament, The UK Wave Energy program was shut down on 1982-03-19, in a closed meeting, the details of which remain secret. The members of the meeting were recruited largely from the nuclear and fossil fuels industries, and the wave programme manager, Clive Grove-Palmer, was excluded.

An analysis of Salter's Duck resulted in a miscalculation of the estimated cost of energy production by a factor of 10, an error which was only recently identified. Some wave power advocates believe that this error, combined with a general lack of enthusiasm for renewable energy in the 1980s (after oil prices fell), hindered the advancement of wave power technology.
Potential
Deep water wave power resources are truly enormous, between 1 TW and 10 TW, but it is not practical to capture all of this. The useful world-wide resource has been estimated to be greater than 2 TW. Locations with the most potential for wave power include; the western seaboard of Europe, the northern coast of the UK and the Pacific coastlines of North and South America, Southern Africa, Australia and New Zealand. The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter.

The UK has an estimated recoverable resource of between 50–90TWh of electricity a year, this is roughly 15–25% of the current UK electricity demand.



No comments:

Post a Comment